Publikationen am Institut für Bodenkunde

Publikationen in den Arbeitsgruppen

Zeige Ergebnisse 91 - 100 von 703

2023


Szyja, M., Felde, V. J. M. N. L., Lückel, S., Tabarelli, M., Leal, I. R., Büdel, B., & Wirth, R. (2023). Biological soil crusts decrease infiltration but increase erosion resistance in a human-disturbed tropical dry forest. Frontiers in microbiology, 14, Artikel 1136322. https://doi.org/10.3389/fmicb.2023.1136322
Teixeira, P. P. C., Trautmann, S., Buegger, F., Felde, V. J. M. N. L., Pausch, J., Müller, C. W., & Kögel-Knabner, I. (2023). Role of root hair elongation in rhizosheath aggregation and in the carbon flow into the soil. Biology and fertility of soils, 59(3), 351-361. Vorabveröffentlichung online. https://doi.org/10.1007/s00374-023-01708-6, https://doi.org/10.1007/s00374-023-01718-4
Tian, Y., Shi, C., Malo, C. U., Kwatcho Kengdo, S., Heinzle, J., Inselsbacher, E., Ottner, F., Borken, W., Michel, K., Schindlbacher, A., & Wanek, W. (2023). Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses. Nature Communications, 14, Artikel 864. Vorabveröffentlichung online. https://doi.org/10.1038/s41467-023-36527-8
Tian, Y., Schindlbacher, A., Malo, C. U., Shi, C., Heinzle, J., Kwatcho Kengdo, S., Inselsbacher, E., Borken, W., & Wanek, W. (2023). Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies. Soil Biology and Biochemistry, 184, Artikel 109109. Vorabveröffentlichung online. https://doi.org/10.1016/j.soilbio.2023.109109
Tunega, D., Šolc, R., Grančič, P., Gerzabek, M. H., Goebel, M. O., Guggenberger, G., Bachmann, J., & Woche, S. K. (2023). Wettability of siloxane surfaces assessed by molecular dynamics, contact angle determination, and X-ray photoelectron spectroscopy. Applied surface science, 611, Artikel 155680. Vorabveröffentlichung online. https://doi.org/10.1016/j.apsusc.2022.155680
van Wesemael, B., Chabrillat, S., Sanz Dias, A., Berger, M., & Szantoi, Z. (2023). Remote Sensing for Soil Organic Carbon Mapping and Monitoring. Remote sensing, 15(14), Artikel 3464. https://doi.org/10.3390/rs15143464
Voigt, C., Virkkala, A. M., Hould Gosselin, G., Bennett, K. A., Black, T. A., Detto, M., Chevrier-Dion, C., Guggenberger, G., Hashmi, W., Kohl, L., Kou, D., Marquis, C., Marsh, P., Marushchak, M. E., Nesic, Z., Nykänen, H., Saarela, T., Sauheitl, L., Walker, B., ... Sonnentag, O. (2023). Arctic soil methane sink increases with drier conditions and higher ecosystem respiration. Nature climate change, 13, 1095–1104. Vorabveröffentlichung online. https://doi.org/10.1038/s41558-023-01785-3
Vu, T. T. T., Nguyen, N. T. T., Duong, L. H., Nguyen, A. D., Nguyen-Thanh, L., Dultz, S., & Nguyen, M. N. (2023). Coaggregation assisted by cationic polyelectrolyte and clay minerals as a strategy for the removal of polystyrene microplastic particles from aqueous solutions. Applied clay science, 233, Artikel 106820. Vorabveröffentlichung online. https://doi.org/10.1016/j.clay.2023.106820
Wang, C., Thielemann, L., Dippold, M. A., Guggenberger, G., Kuzyakov, Y., Banfield, C. C., Ge, T., Guenther, S., & Dorodnikov, M. (2023). Reductive dissolution of iron phosphate modifies rice root morphology in phosphorus-deficient paddy soils. Soil Biology and Biochemistry, 177, Artikel 108904. Vorabveröffentlichung online. https://doi.org/10.1016/j.soilbio.2022.108904
Yu, H., Zhang, X., Shen, W., Yao, H., Meng, X., Zeng, J., Zhang, G., & Zamanien, K. (2023). A meta-analysis of ecological functions and economic benefits of co-culture models in paddy fields. Agriculture, Ecosystems and Environment, 341, Artikel 108195. Vorabveröffentlichung online. https://doi.org/10.1016/j.agee.2022.108195