Our Publications: Institute of Soil Science

Publications of the research groups

Showing results 51 - 60 out of 735

2024


Yan, Z., Jia, R., Zhou, J., Zamanian, K., Yang, Y., Mganga, K. Z., Zeng, Z., & Zang, H. (2024). Soybean inclusion reduces soil organic matter mineralization despite increasing its temperature sensitivity. Science of the Total Environment, 922, 171334. Article 171334. https://doi.org/10.1016/j.scitotenv.2024.171334
Yang, L., Zhou, J., Zamanian, K., Zhang, K., Zhao, J., Zang, H., Yang, Y., & Zeng, Z. (2024). Peanut straw application rate had a greater effect on decomposition and nitrogen, potassium and phosphorus release than irrigation. Plant and soil, 499(1-2), 193-205. https://doi.org/10.1007/s11104-022-05614-y
Zamanian, K., Taghizadeh-Mehrjardi, R., Tao, J., Fan, L., Raza, S., Guggenberger, G., & Kuzyakov, Y. (2024). Acidification of European croplands by nitrogen fertilization: Consequences for carbonate losses, and soil health. Science of the Total Environment, 924, Article 171631. https://doi.org/10.1016/j.scitotenv.2024.171631
Zhang, S., Zamanian, K., Raza, S., Raheb, A., Feng, Y., & Zhao, X. (2024). A balance among irrigation and fertilization regimes to reduce greenhouse gases emissions from saline and alkaline soils. Land degradation & development, 35(1), 168-182. https://doi.org/10.1002/ldr.4907
Zhao, X., Shi, J., Xue, L., Li, W., Zamanian, K., Han, J., & Chen, S. (2024). Water Point and Non-Point Nitrogen Pollution Due to Land-Use Change and Nitrate Deposition in China from 2000 to 2020. Water, 16(10), Article 1396. https://doi.org/10.3390/w16101396
Zhou, J., Feng, W., Brown, R. W., Yang, H., Shao, G., Shi, L., Gui, H., Xu, J., Li, F. M., Jones, D. L., & Zamanian, K. (2024). Microplastic contamination accelerates soil carbon loss through positive priming. Science of the Total Environment, 954, Article 176273. https://doi.org/10.1016/j.scitotenv.2024.176273
Zhou, J., Liu, Y., Liu, C., Zamanian, K., Feng, W., Steiner, S. K., Shi, L., Guillaume, T., & Kumar, A. (2024). Necromass responses to warming: A faster microbial turnover in favor of soil carbon stabilisation. Science of the Total Environment, 954, Article 176651. https://doi.org/10.1016/j.scitotenv.2024.176651
Zhou, J., Liu, C., Shi, L., & Zamanian, K. (2024). Rhizosphere influence on microbial functions: consequence for temperature sensitivity of soil organic matter decomposition at early stage of plant growth. Plant and soil, 494(1-2), 95-109. https://doi.org/10.1007/s11104-023-06258-2

2023


Abu Quba, A. A., Goebel, M. O., Karagulyan, M., Miltner, A., Kästner, M., Bachmann, J., Schaumann, G. E., & Diehl, D. (2023). Changes in cell surface properties of Pseudomonas fluorescens by adaptation to NaCl induced hypertonic stress. FEMS Microbes, 4, Article xtac028. https://doi.org/10.1093/femsmc/xtac028
Abu Quba, A. A., Goebel, M. O., Karagulyan, M., Miltner, A., Kästner, M., Bachmann, J., Schaumann, G. E., & Diehl, D. (2023). Hypertonic stress induced changes of Pseudomonas fluorescens adhesion towards soil minerals studied by AFM. Scientific reports, 13(1), Article 17146. https://doi.org/10.1038/s41598-023-44256-7