Research
Publications

Our Publications: Institute of Soil Science

Publications of the research groups

Showing results 141 - 150 out of 676

2022


Stock, S. C., Koester, M., Nájera, F., Boy, J., Matus, F., Merino, C., Abdallah, K., Spielvogel, S., Gorbushina, A. A., Dippold, M. A., & Kuzyakov, Y. (2022). Vegetation strategies for nitrogen and potassium acquisition along a climate and vegetation gradient: From semi-desert to temperate rainforest. GEODERMA, 425, [116077]. https://doi.org/10.1016/j.geoderma.2022.116077
Sun, Q., Zamanian, K., Huguet, A., Bayat, O., Wang, H., & Badawy, H. S. (2022). Genesis and soil environmental implications of intact in-situ rhizoliths in dunes of the Badain Jaran Desert, northwestern China. Acta Geochimica, 41(5), 811-822. https://doi.org/10.1007/s11631-022-00543-0, https://doi.org/10.15488/12808
Tang, N., Siebers, N., Leinweber, P., Eckhardt, K. U., Dultz, S., Nischwitz, V., & Klumpp, E. (2022). Implications of Free and Occluded Fine Colloids for Organic Matter Preservation in Arable Soils. Environmental Science and Technology, 56(19), 14133-14145. https://doi.org/10.1021/acs.est.2c01973
Uteau, D., Horn, R., & Peth, S. (2022). Millimetre scale aeration of the rhizosphere and drilosphere. European journal of soil science, 73(4), [e13269]. https://doi.org/10.1111/ejss.13269
Varsadiya, M., Liebmann, P., Petters, S., Hugelius, G., Urich, T., Guggenberger, G., & Bárta, J. (2022). Extracellular enzyme ratios reveal locality and horizon-specific carbon, nitrogen, and phosphorus limitations in Arctic permafrost soils. BIOGEOCHEMISTRY, 161(2), 101-117. https://doi.org/10.1007/s10533-022-00967-z, https://doi.org/10.1007/s10533-023-01020-3
Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Chabrillat, S., Demattê, J. A. M., Ge, Y., Gomez, C., Guerrero, C., Peng, Y., Ramirez-Lopez, L., Shi, Z., Stenberg, B., Webster, R., Winowiecki, L., & Shen, Z. (2022). Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century. European journal of soil science, 73(4), [e13271]. https://doi.org/10.1111/ejss.13271
Wang, C., Thielemann, L., Dippold, M. A., Guggenberger, G., Kuzyakov, Y., Banfield, C. C., Ge, T., Günther, S., Bork, P., Horn, M. A., & Dorodnikov, M. (2022). Can the reductive dissolution of ferric iron in paddy soils compensate phosphorus limitation of rice plants and microorganisms? Soil Biology and Biochemistry, 168, [108653]. https://doi.org/10.1016/j.soilbio.2022.108653
Wang, C., Thielemann, L., Dippold, M. A., Guggenberger, G., Kuzyakov, Y., Banfield, C. C., Ge, T., Guenther, S., Bork, P., Horn, M. A., & Dorodnikov, M. (2022). Microbial iron reduction compensates for phosphorus limitation in paddy soils. Science of the Total Environment, 837, [155810]. https://doi.org/10.1016/j.scitotenv.2022.155810
Yang, L., Zhou, J., Zamanian, K., Zhang, K., Zhao, J., Zang, H., Yang, Y., & Zeng, Z. (2022). Peanut straw application rate had a greater effect on decomposition and nitrogen, potassium and phosphorus release than irrigation. Plant and soil. https://doi.org/10.1007/s11104-022-05614-y
Yang, L., Zhou, J., Zamanian, K., Zhang, K., Zhao, J., Zang, H., Yang, Y., & Zeng, Z. (2022). Straw decomposition: profound effect of incorporation than irrigation. https://doi.org/10.21203/rs.3.rs-1480580/v1